BASI DI DATI 2

TUTORIAL. PENTAHO SOLUTIONS:

ETL — IL TOOL KETTLE

SCHEMA WORKBENCH
Bl SERVER & JPIVOT

a.a 2017/2018

Three level architecture

] >
a Dati esterni

Livello delle sorgenti . z
Dati operazionali \Y Strumenti ETL

= -
j— U

Meta - dati

Livello di alimentazione
Caricamento Q

llllﬂ

Livello del data warehouse

Data mart

Livello di analisi [l =] =] =1

Strumenti di Strntl Stl‘lll:elltl di Strumenti per I’analisi
what-if

reportistica QpAP gata mining

Generic data warehouse architecture

w
L

Central Warehouse &
Data Marts o -

XSources B ETL Process & Data Warehouse _ SR FUL_ 2

Data warehouse with Mondrian

_
- SQL Database: MySQL

o OLAP Engine: Mondrian ROLAP
- Analisys front end: JPivot

— e e

{1 1)

’
J

Mondrian Analysis
SQL Database ROLAP Front end

1
OLAP Front End | Metadata and Back End
1
Pen‘I'CIhO OLAP e B I Rentaho Sk XML Pentaho
eb Browser entaho Schema _ Aggregate
Crosstab | Workbench Editor Designer
I
components . e
. - | e 3
I </Cube>
I </Schema>
1 HTTP | Publish Edit OpGmize, Design.
Request | Populate
| — - — _ I_ _________ _
6. HTML |
Response |
P I
=
2 I Schema
2 File (XML)
£ Read Metadata
& |
I
I
JPivot & Mondrian
Servlet ROLAP Engine
5. Mutidimensional
Result
3.50L
4. Relational
Result
&
=
s
=
- RDBMS
s 2

Tools

JPivot analysis front end.

JPivot is a Java-based analysis tool that serves as the actual
user interface for working with OLAP cubes.

Mondrian ROLAP engine:

The engine receives MDX (Multi Dimensional EXpressions)
queries from front-end tools such as JPivot, and responds by
sending a multidimensional result-set.

Schema Workbench:

This is the visual tool for designing and testing Mondrian
cube schemas. Mondrian uses these cube schemas to
interpret MDX and translate it into SQL queries to retrieve
the data from an RDBMS.

Data Integration:

The desktop tool (Kettle) for building ETL jobs and
transformations.

Schema

A central structure is the schema.

The schema is essentially an XML document that
describes one or more multidimensional cubes.

The cubes also describe the mapping of the cube’s
dimensions and measures to tables and columns in
a relational database.

To Mondrian, the schema is key in translating the
MDX query to SQL queries.

Schema Design Tools

The multidimensional model, consisting of
dimensions, hierarchies, and measures, Is
created first and the relational model is mapped
iInto the schema.

Pentaho Schema Workbench offers a graphical
user interface to create Mondrian schemas.

In addition, Pentaho Schema Workbench can
publish schemas to the Pentaho Server, which then
stores them in the solution repository.

Once stored in the solution repository, the schemas
can be used by the server's Mondrian engine as a
back end for OLAP services.

Data warehouse in practice (with Mondrian)

Data Extraction

Data

DFM Creation |/

Supplier Type
Product

Month SALES

%8 Quantity
Week Amount

Category

Salesman

Shop City

Country

ROLAP Modeling

SQL

Data

Transformation/Load Metadata

HTTP
Request

Response

Multidimensional
Result

Metadata

Metadata

Relational Result

RDBMS

~
7

(MySQL)

Introduction

Pentaho Data Integration (PDI, also called Kettle) is the
component of Pentaho responsible for the Extract,
Transform and Load (ETL) processes.

Though ETL tools are most frequently used in data
warehouses environments, Kettle can also be used for

other purposes:
Migrating data between applications or databases

Exporting data from databases to flat files
Loading data massively into databases
Data cleansing
Integrating applications

Kettle is easy to use.

Every process is created with a graphical tool where you
specify what to do without writing code to indicate how to

do it.

-

What is Spoon? &

Kettle is an acronym for "Kettle E.T.T.L. Environment."
Kettle is designed to help you the Extraction,
Transformation, Transportation and Loading of data.

Spoon is a graphical user interface that allows you to
design transformations and jobs that can be run with
the Kettle tools — Pan and Kitchen.

Pan is a data transformation engine that performs a
multitude of functions such as reading, manipulating,
and writing data to and from various data sources.

Kitchen is a program that executes jobs designed by
Spoon in XML or in a database repository.

Jobs are usually scheduled in batch mode to be run
automatically at regular intervals.

Kettle Ul

SEEElETE

(3 Albero principale m 2= kettle_loading &%
Passi [java | o m| %@ Bles& 5[=l

{23 Transform r
4

EIE:I Flussa ManufacturersCatalogSrc Write {o log
i ¥ Java Filter

Elﬁ Scripting éz
M Modified Java Script Value '

""" & User Defined Java Class %Q = Ex SQL scriot
-7 User Defined Java Expression z EOR W
{23 Lookup i
~{20 Joins
{23 Data Warehouse
{23 validazione
-2 Statistiche
{20 Job
{20 Mapping
-3 Inline
- E Injector
Elﬁ Sperimentale

- S Script ifi i
i Modified Java Script
{23 Deprecato P

{23 Bulk loading
=53 Storico

M Modified Java Script Value

----- M Modified Java Scrit Value

Java Filter

ManufacturersCatalogDst

ManufacturersListSrc

ETL by Example

Kettle can be used as a standalone application,
or it can be used as part of the larger Pentaho

Suite.

As an ETL tool, it is the most popular open
source tool available.

Kettle supports a vast array of input and output
formats, including text files, data sheets, and
commercial and free database engines.
Through a simple "Hello world” example, we will show

how easy it is to work with Kettle and get you ready to
make your own more complex transformations.

Installing Kettle

Follow the instructions below to install Spoon:

You can download Kettle (4.1 or higher)
from

Install the Sun Microsystems Java Runtime
Environment version 1.5 or higher.

Unzip the binary distribution zip-file in a directory
of your choice.

http://kettle.pentaho.com/

Repository and files

In Spoon, you build Jobs and Transformations.

Kettle offers two methods to save them:
Database repository
Files

f you choose the repository method, the repository
nas to be created the first time you execute Spoon.

f you choose the files method, the Jobs are saved in
files with the kjb extension, and the Transformations
are in files with the ktr extension.

We will work with the second method.

Starting Spoon

Start Spoon by executing spoon.bat on
Windows, or spoon.sh on Unix-like operating
systems.

As soon as Spoon starts, a dialog window
appears asking for the repository connection
data...

Go to the Tools menu and click Options....

A window will come up that enables you to change
various general and visual characteristics.

If you change something, it will be necessary to
restart Spoon in order to see the changes applied.

Hello World Example

Although this will be a simple example, it will

introduce you to some of the fundamentals of
Kettle:

Working with the Spoon tool
Transformations

Steps and Hops

Predefined variables

Previewing and Executing from Spoon

Executing Transformations from a terminal window
with the Pan tool.

Overview

Let's suppose that you have a CSV file containing
a list of people, and want to create an XML file
containing greetings for each of them.

If this were the content of vour CSV file:

last name, name
Suarez,Maria
Guimaraes, Joao
Rush, Jennifer

" Ortiz,Camila

" Rodriguez,Carmen
da Silva, Zoe

Overview (2)

T e
- This would be the output in your XML file:

S
1

. — <Rows>

<row>
<msg>Hello,

</row>

<row>
<msg>Hello,

</row>

<row>
<msg>Hello,

</row>

<row>
<msg>Hello,

</row>

<row>
<msg>Hello,

</row>

<row>
<msg>Hello,

</row>

</Rows>

Maria!</msg>

Joao!</msg>

Jennifer!</msg>

Camila!</msg>

Carmen!</msg>

Zoe!</msg>

Overview (3)

The creation of the file with greetings from the flat
file will be the goal for your first Transformation.

A Transformation is made of Steps linked by
Hops.

These Steps and Hops form paths through which
data flows:

Therefore it's said that a Transformation is data-
flow oriented.

Preparing the environment

Before starting a Transformation, create
a Tutorial folder in the installation folder or some

other convenient place.
There you'll save all the files for this tutorial.

Then create a CSV file like the one shown above,
and save it in the Tutorial folder as list.csv.

Transformation walkthrough

The proposed task will be accomplished in three
subtasks:

Creating the Transformation

Constructing the skeleton of the Transformation
using Steps and Hops

Configuring the Steps in order to specify their
behavior

Creating the Transformation

Click New, then select Transformation.
Alternatively you can go to the File menu, then
select New, then Transformation.

You can also just press Ctrl-N.

In t
clic
clic

ne View navigator, click Transformation 1, then
K Settings. Or right click the diagram and

K Transformation Settings.

Or use the Ctrl+T shortcut.

A window appears where you can specify
Transformation properties. In this case, just write a
name and a description, then click Save.

Save the Transformation in the Tutorial folder with

the

name hello. This will create a hello.ktr file.

Constructing the skeleton of the Transformation
using Steps and Hops

A Step is the minimal unit inside a Transformation.

A wide variety of Steps are available, grouped into categories like
Input and Output, among others.

Each Step is designed to accomplish a specific function, such as
reading a parameter or normalizing a dataset.

A Hop is a graphical representation of data flowing between two
Steps, with an origin and a destination.

The data that flows through that Hop constitutes the Output Data of
the origin Step, and the Input Data of the destination Step.

A Hop has only one origin and one destination, but more than one
Hop could leave a Step.

When that happens, the Output Data can be copied or distributed to every
destination.

Likewise, more than one Hop can reach a Step.

In those instances, the Step has to have the ability to merge the Input from
the different Steps in order to create the Output.

The Transformation

A Transformation has to do the

following: @
Read the CSV file CSV file input
Build the greetings T

Save the greetings in the XML
file
For each of these items you'll

use a different Step, according to
the next diagram:

IS

Modified Javag Script Value

XML Output

The Transformation (2)

Here's how to start the Transformation:

To the left of the workspace is the Steps Palette.
Select the Input category.

Drag the CSV file onto the workspace on the
right.

Select the Scripting category.

Drag the Modified JavaScript Value icon to the
workspace.

Select the Output category.
Drag the XML Output icon to the workspace.

The Transformation (3)

Now you will link the CSV file input with the
Modified Java Script Value by creating a Hop:
Select the first Step.

Hold the Shift key and drag the icon onto the
second Step.

Link the Modified Java Script Value with the XML
Output via this same process.

Specifying Step behavior

Every Step has a configuration window.

These windows vary according to the functionality
of the Steps and the category to which they
belong.

Step Name is always a representative name inside
the Transformation - this doesn't change among
Step configurations.

Step Description allows you to clarify the purpose
of the Step.

The configuration window

(21 Main Tree
{2} Core Objects

5 Welcome! IM\LW {Th: trsfCountry

7 Input
DOutput

B Text fle output
& Table cutput
B Irsert [Update
™ Update

Delete

% Seriaize to Fle

Lookup

> Transform

» Joins

~# Scripting

7 Data Warehouse
Mapping

» Job

5 Inline

7 Experimental
7 Deprecated

| P » « |»n «

R

{c) 2007 et-tools. info EJ =
-
Table input Fibar rows Countries starting with 5
| Repects
=iBixi
Step name [SIEIREE
Send ‘trug’ data to step: |cm5 starting with 5 ;I
send Talse' data to step: [Rejects |
The condtion;
) % .
OUNTRY_TEAT| [ETARTS VITH| |] —
] (String)
K1 JLi
ok | cancel |

Configuring the CSV file input Step

Double-click on the CSV file input Step.

The configuration window belonging to this kind of
Step will appear. Here you'll indicate the location,
format and content of the input file.

Replace the default name with one that is more
representative of this Step's function. In this case,
type in name list.

In the Filename field, type the name and location
of the input file.

Note

It is possible to use variables as well as plain text in a
field.

A variable can be written manually as ${variable_name}
or selected from the variable window, which you can
access by pressing Ctrl-Spacebar.

This window shows both predefined and user-defined
variables. Select:

${Internal. Transformation.Filename.Directory}
Then type a slash and the name of the file you created:
${Internal. Transformation.Filename.Directory}/list.csv

At runtime the variable will be replaced by its value, which
will be the path where the Transformation was saved. The
Transformation will search the file list.csv in that location.

Configuring the CSV file input Step (2)

Click Get Fields to add the list of column names
of the input file to the grid. By default, the Step
assumes that the file has headers (the Header
row present checkbox is checked).

Switch lazy conversion off. When enables, lazy
conversion avoids unnecessary data type
conversions and can result in a significant
performance improvements.

Click Preview to ensure that the file will be read
as expected. A window showing data from the file
will appear.

Click OK to finish defining the Step CSV file input.

Configuring the Modified JavaScript Value
Step

Double-click on the Modified JavaScript
Value Step.

The Step configuration window will appear, that
allows you to write JavaScript code.

Name this Step Greetings.

The main area of the configuration window is for
coding. To the left, there is a tree with a set of
available functions that you can use in the code.
Write the following code:

var msg = 'Hello, ' + name +

Configuring the Modified JavaScript Value
Step (2)

At the bottom you can type any variable created in the
code. In this case, you have created a variable

named msg. Since you need to send this message to the
output file, you have to write the variable name in the grid.

Click OK to finish configuring Step Modified Script Value.

Select the Step you just configured. In order to check that
the new field will leave this Step, you will now see the Input
and Output Fields.

Right-click the Step to bring up a context menu.

Select Show Input Fields. You'll see that the Input Fields
are last_name and name, which come from the CSV file
input Step.

Select Show Output Fields. You'll see that not only do
you have the existing fields, but also the new msg field.

Note

There are Steps that simply transform the input
data. In this case, the input and output fields are
usually the same.

There are Steps, however, that add fields to the
Output - Calculator, for example.

There are other Steps that filter or combine data
causing that the Output has less fields that the
Input - Group by, for example.

Configuring the XML Output Step

Double-click the XML Output Step. The configuration
window for this kind of Step will appear. Here you're
going to set the name and location of the output file,
and establish which of the fields you want to include.

You may include all or some of the fields that reach
the Step.

Name the Step File with Greetings.
In the File box write:
${Internal.Transformation.Filename.Directory}/Hello.xml

Click Get Fields to fill the grid with the three input
fields, so delete name and last_name.

Save the Transformation again.

How does it work?

When you execute a Transformation, almost all Steps are
executed simultaneously.

The Transformation executes asynchronously; the rows of data
flow through the Steps at their own pace.

Each processed row flows to the next Step without waiting for the
others. In real-world Transformations, forgetting this characteristic
can be a significant source of unexpected results.

At this point, Hello World is almost completely configured.

A Transformation reads the input file, then creates messages

for each row via the JavaScript code, and then the message is
sent to the output file.

This is a small example with very few rows of names, so it is
difficult to notice the asynchronous execution in action.

Keep in mind, however, that it's possible that at the same time
a name is being written in the output file, another is leaving the
first Step of the Transformation.

Executing a transformation

£y view r}"ﬁ:g?g? ‘ }‘{ Sample Transformation &2
Steps [| (BB |(PHER¥P BBEE & & |00% v
nput o
a Access Input
B nﬂ CSV file input - ?ﬁ? e - A3 - ‘z)'(» -—
#E Data Grid i o B = s
[De-serialize from file Read Sales Data Filter Midsing Zips alue Mapper Select values MNumber range \Write to Database
A\ EsRI Shapefile Reader
B ﬂ Excel Input t:;.'(*
ﬁ. Fixed file input tz)‘(*
& Generate random value /Kpé e Field Layout Totest this transformation, you will needto:
M| Generate Rows ek e _ e database)
My ot data from XML a—ﬁ_-— Q= - Make sure the Hypersonic sample €1is running
[, GetFiles Rows Count Fovexd Promited Codos tockup Mineing Zvm create the target output table
7 Get SubFolder names
- En Get System Info
E Google Analytics Input
- g} Google Docs Input 3
) LDAP Input
-} LDIF Input
ﬂ Mondrian Input
18 OLAP Input
Uﬁ Property Input
-l RSS Input
(& 53Csv Input . —
- Q Salesforce Input Execution Resu“_s . O
% SAP Input @ Execution History] dF Logging ;; Step Metrics » Performance Graph]
- ﬁ Table input Q
(& Text file input -
o }E XBase input 3 4 | Stepname Copynr Read Written Input | Output Updated Rejected Errors | Active Time Speed (r/fs) inpi
&8 output 1 Filter Mis;ing Zips_ 0 2823 2823 0 0 0 0 o] F?n?shed 0.5 60159.1
2 Lookup Missing Zips 0 21455 76 0 0 0 0 0 Finished 0.9 24520.0
&-453 Transform 3 Read Postal Codes 0 0 21373 21330 0 1 0 0 Finished 0.7 31815.4
Utility I Prepare Field Lavout 0 76 76 0 0 0 0 0 Finished 0.9 85.2
: Flow 5 Value Mapper 0 2823 2823 0 0 0 0 0 Finished 0.9 3112.4
Scripting [Read Sales Data 0 0 2823 2824 8] 1 0 0 Finished 0.3 8209.3
) Lookup 7 Select values 0 2823 2823 0 0 0 0 0 F?n?shed 0.2 3112.4
- B B N T

Verify, preview and execute

Before executing the Transformation, check that
everything is properly configured by
clicking Verify.
Spoon will verify that the Transformation is
syntactically correct, and look for unreachable
Steps and nonexistent connections.

If everything is in order (it should be if you followed

the instructions), you are ready to preview the
output.

Preview and Execute

Select the JavaScript Step and then click Preview
button.

As you can see, Spoon suggests that you preview the
selected Step. Click QuickLaunch. After that, you will
see a window with a sample of the output of the
JavaScript Step.

If the output is what you expected, you're ready to execute
the Transformation.

Click Run.

Spoon will show a window where you can set, among
other information, the parameters for the execution
and the logging level.

Click Launch. A new window tab will appear in the
Job window. This is the log tab, which contains a log
of the current execution.

Step metrics

In the step metric section the executed operations
for each Step of the Transformation are provided.
In particular, pay attention to these:

Read: the number of rows coming from previous
Steps.

Written: the number of rows leaving from this Step
toward the next.

Input: the number of rows read from a file or table.

Output: the number of rows written to a file or
table.

Errors: errors (in red) in the execution.

Log tab

In the log tab you will see the execution step by
step.
The detail will depend on the log level established.

If you pay attention to this detail, you will see the
asynchronicity of the execution.
The last line of the text will be:

Spoon - The transformation has finished!!

If there weren't error messages in the text, open
the newly generated Hello.xml file and check its
content.

Pan

Pan allows you to execute Transformations from a
terminal window.

The script is pan.bat on Windows, or pan.sh on other
platforms, and it's located in the installation folder.

If you run the script without any options, you'll see a
description pan with a list of available options.

To execute your Transformation, try the simplest
command:

pan [file <Jobs path>/Hello.ktr /norep

Inorep is a command to ask Spoon not to connect to
the repository.

[file precedes the name of the file that contains the
Transformation.

<Jobs path> is the full path to the Tutorial folder.

Refining Hello World

Now that the Transformation has been created
and executed, the next task is enhancing it.

Exercise: execute the Transformation you created,
setting as the name of the input file, a file that doesn't
exist. See what happens!

Hello World Refined Example

This example will introduce you to some of the
fundamentals of Kettle:

Jobs

Job Entries and Hops
Input parameters

Setting variables
Conditions and branches

Executing Jobs from a terminal window with the
Kitchen tool.

Overview

These are the improvements that you'll make to
your existing Transformation:

You won't look for the input file in the same folder,
but in a new one, a folder independent to that
where the Transformations are saved.
The name of the input file won't be fixed; the
Transformation will receive it as a parameter.
You will validate the existence of the input file.

The name the output file will be dependent of the name
of the input file.

The improvements

Here's what happens:
Get the parameter
Check if the parameter is null; if it is, abort
Check if the file exists; if not, abort
Create the output file with greetings

Job

This will be accomplished via a Job, which is a component
made by Job Entries linked by Hops.
These Entries and Hops are arranged according the expected

order of execution. Therefore it is said that a Job is flow-control
oriented.

A Job Entry is a unit of execution inside a Job.

Each Job Entry is designed to accomplish a specific function,
ranging from verifying the existence of a table to sending an email.

From a Job it is possible to execute a Transformation or
another Job, that is, Jobs and Transformations are also Job
Entries.

A Hop is a graphical representation that identifies the sequence
of execution between two Job Entries.
Even when a Hop has only one origin and one destination, a

particular Job Entry can be reached by more than a Hop, and more
than a Hop can leave any particular Job Entry.

The process

This is the process:

Getting the parameter will be resolved by a new
Transformation.

The parameter will be verified through the result
of the new Transformation, qualified by the
conditional execution of the next Steps.

The file's existence will be verified by a Job Entry.

Executing the main task of the Job will be made
by a variation of the Transformation you made in
the first Hello World example.

Graphically
—

>

START

!

b 14
AR

Transforlnatm

File Exi Abort job 1

b1 4
AR

Transformation 2 Abort job 2

Preparing the Environment

The input and output files will be in a new folder
called Files.

Copy the list.csv file to this new directory.
Create a variable containing this information. To

do this, edit the kettle.properties configuration
file.

Put this line at the end of the file, changing the
path to the one specific to the Files directory you
just created:

FILES=<File Path>/Files
Restart Spoon.

Todo

Now you are ready to start.

This process involves three stages:
Create the Transformation

Modify the Transformation
Build the Job

Creating the Transformation

Create a new Transformation

get file_name the same way EO

you did before. Get System Info

Drag the following Steps to the i

workspace, name them, and link i

them according to the diagram: v

© lrisultato e FALSE] Fiffer rowg [¥ Urisultato & TRUE

Get System Info (Input category) /P
Filter Rows (Flow category)
Abort (Flow category) @

Set Variable (Job category) SetiVpnmbles Abort

Configuring the Get System Info

This Step captures information from sources outside
the Transformation, like the system date or
parameters entered in the command line.

We will use the Step to get the first and only parameter.

The configuration window of this Step has a grid. In this
grid, each row you fill will become a new column
containing system data.

Double-click the Step.

In the first cell, below the Name column, write
my _file.

When you click the cell below Type, a window will
show up with the available options.

Select command line argument 1.
Click OK.

Configuring the Filter Rows

This Step divides the output in two, based upon a
condition. Those rows for which the condition evaluates to
true follow one path in the diagram, the others follow
another.

Double-click the Step.

Write the condition: In Field select my_file and replace
the = with IS NULL.

In the drop-down list next to Send *true’ data to Step,
select Abort.

In the drop-down list next to Send *false' data to Step,
select Set Variable.

Click OK.

Now a NULL parameter will reach the Abort Step, and a
NOT NULL parameter will reach the Set Variable Step.

Configuring the Abort

You don't have anything to configure in this Step.
If a row of data reaches this Step, the
Transformation aborts, then fails, and you will use
that result in the main Job.

Configuring the "Set Variable"

This Step allows you to create variables and put
the content of some of the input fields into them.
The configuration window of the Step has a grid.
Each row in this grid is meant to hold a new

variable.

Now you'll create a new variable to use later:
Double-click the Step.

Click Get Fields. The only existing field will
appear: my_file. The default variable name is the
name of the selected field in upper case: MY _FILE.
Leave the default intact.

Click OK.

Execution

To test the Transformation, click Run.

Within the run dialog, you will find a grid titled
"Arguments” on the bottom left.

Delete whatever arguments are already inside, and instead
type list as the first argument value. This will be transferred
to the transformation as the command line argument.

Click Launch.

In the Logging pane, you'll see a message like this:
Set Variables.0 - Set variable MY _FILE to value [list]

Click Run again, and clear the value of the first argument.
This time, when you hit Launch you'll see this:

Abort.0 - Row nr 1 causing abort : []
Abort.0 - Aborting after having seen 1 rows.

Modifying the Transformation

Now it's time to modify the Hello transformation in order to
match the names of the files to their corresponding
parameters.

If the command line argument to the job would be bd2,
this transformation should read the file bd2.csv and
create the file bd2_with_greetings.xml.

It would also be helpful to add a filter to discard the empty
rows in the input file.

Open the Transformation Hello.ktr.
Open the CSV File Input Step configuration window.

Delete the content of the Filename text box, and

press Ctrl-Spacebar to see the list of existing variables.
You should see the FILES variable you added to
kettle.properties. The text becomes:

${FILES}/${MY_FILE}.csv

Modifying the Transformation (2)

1
o Open the XML Output Step configuration

window.

- Replace the content of the Filename text box
with this:

${FILES}/${MY_FILE} with_greetings

o Click Show Filename(s) to view the projected
XML filename.

Modifying the Transformation (3)

Drag a Filter Rows step into the transformation.

Drag the Filter Rows step onto the Hop that leaving CSV
Input and reaching Modified Javascript Script Value.

When the Hop line becomes emphasized (thicker), release the
mouse button.

You have now linked the new step to the sequence of existent
steps.

Select name for the Field, and IS NOT NULL for the
comparator.

Leave Send 'true’ data to Step and Send *false’ data to
Step blank.
This makes it so only the rows that fulfill the condition (rows with

non-null names) follow to the next Step. This is similar to an earlier
Step.

Click OK.

Click Save As and name this Transformation
Hello_with_parameters.

Graphically

list of Fmes

g

greeyings

File with Greetings

File with Greetings

Executing the Transformation

To test the changes you made, you need to make sure
that the variable MY_FILE exists and has a value.

Because this Transformation is independent of the
Transformation that creates the variable, in order to execute
it, you'll have to create the variable manually.

In the Edit menu, click Set Environment Variables.
A list of variables will appear.

At the bottom of the list, type in MY_FILE as the variable
name; as the content, type the name of the file (i.e., list)
without its extension.

Click OK.
Click Run.

In the list of variables, you'll see the one you just created.
Click Launch to execute the Transformation.

Lastly, verify the existence and content of the output file.

Building the main job

Create the Job:
Click New, then Job.

The Job workspace, where you can drop Job
Entries and Hops, will come up.

Click Job, then Settings.
A window in which you can specify some Job

properties will come up.
Type in a name and a description.

Click Save. Save the Job in the Tutorial folder,
under the name Hello.

Building the main job (2)

Build the skeleton of the Job with Job Entries and
Hops:

Drag the following steps into the workspace:

one General->Start step, two General-

>Transformation steps, and one File
Exists step.

Link them in the following order: Start,
Transformation, File Exists, Transformation.

Drag two General->Abort steps to the
workspace. Link one of them to the

first Transformation step and the other to
the File Exists step.

The newly created hops will turn red.

Configure the Steps

Double click the first Transformation step. The
configuration window will come up.

In the Transformation filename field, type the
following:

${Internal.Job.Filename.Directory}/get_file name.ktr

This will work if transformations and jobs reside in
the same folder.

Click OK.

Configure the second Transformation

]
- Double-click the entry. The configuration window

will come up.

o Type the name of the other Transformation in
the Transformation Filename field:

${Internal.Job.Filename.Directory}/Hello with param
eter.ktr

o Click OK.

Configure the File Exists

Double-click the entry to bring up the
configuration window.

Put the complete path of the file whose existence
you want to verify in the Filename field.

The name is the same that you wrote in the
modified Transformation Hello:

${FILES}/${MY_FILE}.csv

Configure the Abort steps

Configure the first Abort step:

In the Message textbox write:
The file name argument is missing.

Configure the second Abort step:

In the Message textbox write this text:
The file ${FILES}/${MY_FILE}.csv does not exist.

Note: In runtime, the tool will replace the variable
names by its values. If you place your mouse pointer
over the Message textbox, Spoon will display a tooltip
showing projected output.

Configuring the Hops

A Job Entry can be executed unconditionally (it's
executed always), when the previous Job Entry was
successful, and when the previous Job Entry failed.

This execution is represented by different colors in
the Hops:

a black Hop indicates that the following Job Entry is
always executed;

a green Hop indicates that the following Job Entry is
executed only if the previous Job Entry was successful;

a red Hop indicates that the following Job Entry is
executed only if the previous Job Entry failed.

Configuring the Hops (2)

The Steps will execute as you need:
The first Transformation entry will be always executed.

If the Transformation that gets the parameter doesn't
find a parameter, (that is, the Transformation failed), the
control goes through the red Hop towards the

Abort Job entry.

If the Transformation is successful, the control goes
through the green Hop towards the File Exists entry.

If the file doesn't exist the control goes through the red
Hop, towards the second Abort Job entry.

If the verification is successful, the control goes through
the green Hop towards the main Transformation entry.

Configuring the Hops (3)

If you wanted to change the condition for the
execution of a Job Entry, the steps to follow would
be:

Select the Hop that reached this Job Entry.
Right click to bring up a context menu.

Click Evaluation, then one of the three available
conditions.

How it works

When you execute a Job, the execution is tied to the
order of the Job Entries, the direction of the Hops,
and the condition under which an entry is or not
executed. The execution follows a sequence. The
execution of a Job Entry cannot begin until the
fexecution of the Job Entries that precede it has
Inished.

In real-world situations, a Job can be a solution to
solve problems related to a sequence of tasks in the
Transformations. If you need a part of a
Transformation to finish before another part begins, a
solution could be to divide the Transformation into
two independent Transformations, and execute them
from a Job, one after the other.

Executing the Job

To execute a Job, you first must supply a parameter.
Because the only place where the parameter is used is In
the get_file_name Transformation (after that you only use
the variable where the parameter is saved) write the
parameter as follows:

Double-click the get_file_name Transformation Step.

The ensuing window has a grid named Arguments. In the
first row type list.

Click OK.

Click the Run button, or from the title menu select Job-
>Run.

A window will appear with general information related with
the execution of the Job.

Click Launch.

The execution results pane on the bottom should display
the execution results.

Executing the Job (2)

Alternatively, to test the Job directly:

Click the Run button, or from the title menu
select Job->Run.

Within the run dialog, you will find a grid titled
"Arguments" on the bottom left.

Type list as the first argument value. This will be
transferred to the transformation as the command line
argument.

A window will appear with general information
related with the execution of the Job.

Click Launch.

Executing the Job (3)

The new file has been created when you see this
at the end of the log text:

Spoon - Job has ended.

If the input file was list.csv, then the output file
should be list_with_greetings.xml and should
be in the same folder. Find it and check its
content.

Now change the name of the parameter by
replacing it with a nonexistent file name or
deleting the file name and execute the Job again.

Kitchen

Kitchen is the tool used to execute Jobs from a
terminal window. The script is kitchen.bat on
Windows, and kitchen.sh on other platforms, and
you'll find it in the installation folder.

If you execute it, you'll see a description of the
command with a list of the available options.

To execute the Job, try the simplest command:
kitchen /file <Jobs_path>/Hello.kjb <par> /norep

<par> is the parameter that the Job is waiting for.

Remember that the expected parameter is the
name of the input file, without the csv.

Storing transformations and jobs in a repository

The first time you launched Spoon, you chose No
Repository.
PDI offers two methods:

Repository: When you use the repository method

you save jobs and transformations in a repository.
A repository is a relational database specially designed
for this purpose.

Files: The files method consists of saving jobs and

transformations as regular XML files in the file-

system, with extension kjb and ktr respectively.

Repository/Files
=

exclusive

REPOSITORY / \ FILE SYSTEM

| Transformations Jobs |

55

Ktr Kjb

Design, Preview, I:k

Kettle Engine

Design, Preview, Run

Reading a formatted file

e = » =
X

Text file input Discard null columns Text file output

ELCNENCE - 5d groupl . bxt

»\Contenﬂ Error Handlingw Filterﬂ Fieldﬂ
File or directory | $ ‘add | Browse
Regular Expression |
Selectedfiles: | & & | File/Directory | wildcard (R Required |
1 C:\pdi_filesiinputigroup1.txt
Delete
Edit

Text file input (content tab)

=
ﬂText file input Mi=] B3

Stepname |Read groupl.txt

File (€ontent ™. Error Handiing | Filters | Fislds |
Filetype |cCsy LI =

Separator || Insert TAB I

Enclosure |»

Allow breaks in enclosed fields? 5

Escape

Header [v Number of header lines l 1 I

Footer |V Mumber of footer lines | 5 J

Wrappe ‘ MNumber of bimes wrapped | 1

Paged layout (printout)? [Number lines per page | 57
Document header lines] 0 ﬂ

QK Cancel | Preview rows

Text file input (field tab)
—

E‘l’ext file input _ 10} x|

Step name I Read groupl xt
File [Content [érror Handling]%Iters]Fielas\ .

+ | Name | Type | Format | Position | Length |
1 Group strng
2 Cate Date dd;MvM
3 Home_T=am String
4 Resuts String
f Notes Strng
Encer the number of rows you would lIke to preview:
= {100 0
QK | Carcel |
CK | Cancel I Freview rows I
"." Examine preview data !E] m
Rows of step: Read group1.txt (6 rows)
#, - l Group | Date l Home'Team | Results I n.way'Tea‘n | Nctes
i Group 1 02/lun Italy 2-1 France
2 Group 1 02/1un Argentina 2-1 Hungary
3 Group 1 06/1un Italy 31 Hungary
4 Group 1 06/Iun Argentina 2-1 France
5 Group 1 10/Jun France 3-1 Hungary
6 Group 1 10/1un Italy 1-0 Argentina

Close Show Log

Remove columns
—

belect / Rename values

Sep nema | piscard nul columns

Select & Alter [Remove ™. _[/Ieta-daté |

Fields to remowe

= -
X
= -
X

Discard null column

#, » I Fizldname I
1 Group
2 Nokes et Fields to remove |

&) Examine preview data

2% hello_wald 23 Rows of step: Dummy (do nothing) (6 rows)
S G A Y e # - |Date | Home Team | Resuks | Away Team
il 02/Jun Italy 2-1 France
2 02fJun Argentina 2-1 Hungary
3 06/Jun Italy 3-1 Hungary
4 06/Jun Argentina 2-1 France
5 10/Jun France 3-1 Hungary
6 10/Jun Italy 1-0 Argentina

_geee |

Reading multiple files
—

| Fil={Directory I \Widcard [RegExp) l Required |
Cihpdi_files\rpacigroupl, txt .
Cihpdi_filesyrouhgroupz, b &) Eramine preview data Mi=] E3 <:
CApdi_filesyrodhgroup3. b
Cihpdi_filesyrouhoroups. tx Rows of step: Read group™ b (24 rows)
~ |Group | De [Home Team | Results | Away Tezm | Motes & Text file |npUt
O Flienames From presos steps—— [Group 2 05{an Germany FR 6.0 Mexico
Accept Flenames from previo. | 10 Group 2 06[n Pcland 1-0 Tunisia
~ N) 11 Group 2 10{2n Germany FR 0-0 Tunisia
Pass through fields from previod) 192 T Group 2 [10{2n Pcland 31 Mexico
Step toread Flemamd [13 Group 3 | 03{dn Austria 2-1 Spain
|14 Group3 03{dn Sweden 1-1 Brazi
Fled Iin the rput to use as fi] [1g Group 3 07/n Austria 1-0 Sweden
16 Group3 07[dn Brazil 0-0 Spain
: 17 Group3 11{dn Brazil 1-0 Austria
flenama(s)... | _Shen: fls contert 18 Growp3 11{an | Spein 1-0 Sweden
19 Group4 03{dn Netherlands 30 Iran
o I Cancel 20 Groupt 03(dn | Peru 31 Scotland =
ﬂ ad - ~= . !l 1 1 -~ - - I LIJ

File or diractcey I

Recular Expression I

¥} Files read]
sekdedfiles: | @ o | File/Director Wikdcard (Re . =X
1 Ciipdi_Fileslirput), graup[1-4]\.kxt Files read:
File:f#1C:pdi_Filesfinput/groupl .txt
Fike: 11/ pdi_fiesfinpat{group2. txt
flie:f])C:fpdi_flesfinput/group3.txt
File:/11C:Indi_fiesfinputiaroups. txt

accept filenames from previous steps
Accept filenames From previous step [

Pass through Fields from previous step 5 Close |
Step o read filenames from I]

Field in the input ko use as filename I

Show filenarel(s)... | Show file corkent | Show cantent from First data Ine I

Sending data to files

Stepname | Selecting and Renaming Colurns

"Selett s lter . Remove | Meta-data | =

Jeiect & Alter 4 _—
Fields : ==

#.~ | Ficldrame | Rename to | Length | Ge fields to select Discard null column
L Date Match Date .

2 Home_Team Home Tean _EdtMapping.

3 Reodlts Resuk

4 Away_Team Away Team

J | B

Include urspecified Fields,

Step name | Text file output - weup_First_round

File I/Eiortent m

#, - Marne | Type Format
E ‘ 1 Match Date Date dd/MM
2 Home Team String
3 Away Team String
Text file output 4 Result String
q | »

Get Fields | Minimal width

Reading XML (countries.xml file)

_
o In the Content tab, select /Iworld/country/language for

Loop XPath. BlGet XML Data = K3

Step name | Get data from countries.xml

File [Content (Fields™

XM
% I:> # | Name | xPath | Element | Type | Format
1 country ..Jname Node String
Get data from XML 2 capital ..Jcapital Node String
3 language name Node String
+ isofficial isofficial Attribute String
5 percentage percentage MNode Mumber

< | |
Get fields I

oK | Preview rows | Cancel |

& Examine preview data Hi=] E3
Rows of step: Get data from countries.xml {100 rows)

- | country | capital | language | isofficial | percentage | 4|

29 Antigua and Barbuda Saint Johns English T 0.0

30 Argentina Buenos Aires Spanish T 9%.8 _ 4

31 Argentina Buenos Aires Italian F 1.7

32 Argentina Buenos Aires Indian Languages F 0.3

33 Armenia Yerevan Armenian T 93.4

34 Armenia Yerevan Azerbaijani F 2.6

35 Aruba Oranjestad Papiamento F 76.7 ;l

Close Show Log

Filter the rows

Add a Filter rows step with the condition:
isofficial=T. _

ey —
Get data from XML Filter rows

&) Examine preview data Hi=] B3
Rows of step: Filter official languages (100 rows)
- country capital language isofficial percentage | ~
i Afghanistan Kabul Pashto T 52,4 =
2 Afghanistan Kabul Dari T 32.1
3 Albania Tirana Albaniana T 97.9
4 Algeria Alger Arabic T 86.0
S American Samoa Fagatogo Samoan T 90.6
6 American Samoa Fagatogo English T 3.1
7 Andorra Andorra la Vella Catalan T 32.3 ﬂ

Close Stop Get more rows

Text file Input

o
o The ID and country have values only in the first of the

two lines for each country. In order to repeat the
values in the second line use the flag Repeat in the
Fields tab. Setitto .

2

Text file output

Righe di passo: Text file input (48 righe) Righe di passo: Text file input (48 righe)
z ID Country_Name Duet i g ID Country_Name Duet T
1 1 Russia Mikhail Davydova = 1 1 Russia Mikhail Davydova :
2 Anastasia Davydova — 2 1 Russia Anastasia Davydova =
3 2 Spain Carmen Redriguez 3 2 Spain Carmen Redriguez
4 Francisco Delgado 4 2 Spain Francisco Delgado
5 3 Japan Natsuki Harada 5 3 Japan Natsuki Harada
6 Emiko Suzuki 6 3 Japan Emiko Suzuki
7 4 China Lin Jiang 7 4 China Lin Jiang
8 Wei Chiu 8 4 China Wei Chiu
9 5 United States Chelsea Thompson 9 5 United States Chelsea Thompson
10 Cassandra Sullivan - 10 5 United States Cassandra Sullivan -

Stream lookup
—

et data from ountries. <ml

—— 3 Stream Value Lookup Mi=] B3
Frck = Step name | ookup for language
OORUD SteP Fiker officiall
e lCliJénguages Lookup step |Filter official languages |
The key(s) to look up the value(s):
~ | Field | LookupField |
1 Country Name country
= —R
il
Text file input - contestants lookup for language Specify the fields to retrieve :
#, -~ | Field | New name | Default | Type |
1 language String
2 percentage MNumber
Preserve memory (costs CPU) [V
Key and value are exactly one integer field |
Use sorted list (i.s.0. hashtable) [~
QK Cancel Get Fields Get |ookup fields

Stream lookup

@ Examine preview data Hi=] B3 &) Examine preview data =] E3
Rows of step: Text file input - contestants {48 rows, Rows of step: Filter official languages (237 rows)
- | 1D I Country Name | Duet - - | country | capital | language | i50... | pEerc... IZl
1 1 Russia Mikhail Davyd. .. 191 South Africa Pretoria Afrikaans T 14.3
2 1 Russia Anastasia Da.., 192 South Africa Pretoria English T 8.5
2) c,".‘il“ rw; 102 _C~ykh Kotaa Saal)| Koraan T a0 0
4 2 Spain Francisco Del... 194 Spain Madrid Spanish T 74.4
o g Japan TIatsuUK Harada TOS™SITarRa o S T BUTS
6 3 Japan Emiko Suzuki 196 SrilLanka Colombo Tamil T 19.6
7 4 China Lin Jiang 197 Sudan Khartum Arabic T 49.4
3 4 China Wei Chiu 198 Swalbard and Jan ... Longye... Norwegian T 0.0 —
9 5 United States | Chelsea Thom... 199 Swaziland Mbabane Swazi T 89.9
10 5 United States Cassandra Sul... ;] 200 Sweden Stockholm Swedish T 89.5 L,
i | L] 1 |
looking up ...
gsstream ¥Yalue Lookup
Step name | lookup For language I
mokup step |Filter official languages |
The key(s) to look up théyvalue(s):
%~ |Field W T LookupField retrieving data ...
1 Country Name country
Specify the fields to retrieve :
#, - | Field | New name I Default | Type
1 language String
2 percentage Mumber

Filter rows - Select values

In the Filter rows step, type the condition
language IS NOT NULL.

By using a Select values step, rename the fields
Duet, Country Name and language to Name,
Country, and Language.

XM

P

Q ¢

.C\c
e T

o |

Get data from countries.xml Filter officie]l languages

v

\/ﬂ

| .

K= >
IQ?J —-— ’G ——-—— P
I =] X

=

Text file input - contestants

lookup for language Filterrows Select used fields people_and_languages

Querying a database

. Create a new transformation.
. Select the Design view.

1
2
3. Expand the input category of steps and drag a Table Input step to the canvas.
4. Double-click the step.

5

. Click on the Get SQL select statement... button. The database explorer
window appears.

6. Expand the tables list and select ORDERS.

7. Click on OK.

8. PDlI asks if you want to include the field names in the SQL. Answer Yes.

Querying a database (2)
_

9. The SQL box gets filled with a SELECT SQL statement.
SELECT
ORDERNUMBER
, ORDERDATE
, REQUIREDDATE
, SHIPPEDDATE
, STATUS
, COMMENTS
, CUSTOMERNUMBER
FROM ORDERS

10. At the end of the SQL statement, add the following clause:
WHERE STATUS = 'Shipped’

11. Click Preview and then OK. The following window appears:

Rows of sep: Table input {303 rows)

~ | oRoER... | ORDERDATE | REQUIREDDATE | SHIPPEDDATE | STATUS | CCMMENTS | customerRNUMEER | = |
il 10100 2003/01/0600... 2003/01/1300:... 2003/01/1000... Shipped 363 j—
2 10101 | 2003/01/0900... 2003/01/15 00:... 2003/01/1100.. Shipped Check on availability. 128
3 1012 2003/01/1000... 2003/01/18 00:... 2003/01{1400... Shipped 181
4 10103 2003/01/2%00... 2003/02{07 00:... 2003{02/0200... Shipped 121
5 10104 2003/01/3100,,. 2003/02/09 00:... 2003/02/0100... Shipped 141
3 10106 2003/02{1100... 20030221 00:... 2003/02{1200... Shipped 145
7 10105 2003/02/1700.,, 2003f02j24 00:.., 2003j02/2100... Shipped 278
8 10107 2003/02/24 00,.. 2003/03/C3 00:.., 2003/02{2600... Shipped Difficult to negotiaze with customer... 131
9 10103 2003/03/0300... 2003/03/12 00:... 2003/03/0800... Shipped 385
] 10102 2003/03/1000... 2003/03/19 00:... 2003/03/1100... Shipped Customer requested that FedEx Gr... 436
11 10110 2003/03/1800... 2003/03/24 00:... 2003f03f2000.. Shipped 187
12 10111 2003/03/2500... 2003/03/31 00:... 2003/0%3000... Shipped 129
13 10112 2003/03/2400... 2003/04/C3 00:... 2003/03/2900... Shipped Customer requested that ad materi... 144 ﬂ

Close Show Log

Querying a database (3)

12. Close the window and click OK to close the step configuration window.

13. After the Table input step add a Calculator step, a Number Range step, a Sort step,
and a Select values step and link them as follows:

- —) [
IS) | S——— I NS === S—

g S Ig 7

Orders Calculator Number range Sort rows Select values

14. With the Calculator step, add an Integer field to calculate the difference between
the shipped date and the required date. Use the calculation Date A — Date B
(in days) and name the field diff days. Use the Number ranges step to classify

the delays in delivery. Brumber ranges =
Step name: |Deivery
Input field: |diff_days L.I

Qutput field: | delvery

Default valuedif no | unknown

Ranges (min <= x<

#, - | Lower Bound | Lpper Bound I Value I
1 0.0 Early

2 0.0 1.0 On Time

3 1.0 Late

(0] l Cancel |

Querying a database (4)

15. Use the Sort rows step to sort the rows by the diff days field.

16. Use the Select values step to select the delivery, ORDERNUMBER, REQUIREDDATE,
and SHIPPEDDATE fields.

17. With the Select values step selected, do a preview. The following is how the final
data will look:

:: Examine preview data
Rows of step: Shipped orders (303 rows)
~ | delivery | ORDERNUMBER | REQUIREDDATE | SHIPPEDDATE |
292 Early 10297 2004/09/22 00:00:00.000 2004/09/21 00:00:00,000
293 Early 10355 2004/12/14 00:00:00.000 2004/12/13 00:00:00.000
294 Early 10389 2005/03/09 00:00:00.000 2005/03/08 00:00:00.000
295 Early 10395 2005/03/24 00:00:00,000 2005/03/23 00:00:00,000
296 On Time 10121 2003/05/13 00:00:00.000 2003/05/13 00:00:00.000
297 On Time 10160 2003/10/17 00:00:00.000 2003/10/17 00:00:00.000
298 On Time 10240 2004j04/20 00:00:00,000 20040420 00:00:00,000
299 On Time 10251 2004j05/24 00:00:00.000 2004/05/24 00:00:00,000
300 On Time 10331 20041123 00:00:00.000 2004/11/23 00:00:00.000
301 On Time 10339 200471130 00:00:00.000 2004/11/30 00:00:00,000
302 On Time 10358 2004/12/16 00:00:00.000 2004/12/16 00:00:00,000
303 Late 10165 2003!10!31 00:00:00.000 2(])3)'12!26 00:00:00,000 v
4| | »
Close |

Saving into a database
—

Table input CUSTOMERS

[

Tableinput ORDERS Calculator ~ Delivery ~ Sortrows Select values

NG CEE-ER o0 Rows (cartesian product) ‘

Cartella Temp %%java.io.tmpdir%% 2 Sfoglia...

Prefisso TMP-file oyt

Massima dimensione cache (in 500

Passo principale da cui leggere I - I

La condizione:

|Mvcustomer | |= | |CUSTOMERNUHBER | b

| ok || Annulla |

Saving and logging
N

able output MyTable

E -

Table input CUSTOMERS

Tableinput ORDERS Calculator ~ Delivery ~ Sortrows Selectvalues

1.
.---2_--_
=

Wirite to log

Nome del passo ‘

Invia dati "veri” al passo: | Ordina ed aggiunge v

Invia dati "falsi" al passo: | Write to log -

La condizione:

[delivery | <> [| b

Saving and logging (2)

Nome del passo [RERS LR o

Nome Tipo Formato Lunghezza Precisione Valuta Decimale Gruppo Valore
1 testo String ALIAS

able output MyTable

Table input CUSTOMERS

Tableinput ORDERS Calculator ~ Delivery ~ Sortrows Select values

2 e

Write to log

Replacing

Nome del passo

Campi stringa

»~

Campo In stream Campo Out stream Usa RegEx Cerca Sostituisci con Parola intera Cast

delivery Early Cambiato
CUSTOMERNAME
CONTACTLASTNAME
CONTACTFIRSTNAME
PHONE
ADDRESSLINEL
ADDRESSLINE2

cImy

STATE

10 POSTALCODE
COUNTRY

W 0~ O &= W

Z2Z2ZZzZzZzZzZzZ2ZZ22Z22Z2
Z2Z2ZZ2ZZZZ2ZZ2ZzZ2222
Z2Z2ZZzZzZzZzZzZ2ZzZ22Z22Z2

Table output MyTgble

- E

E t_

Table input CUSTOMERS

[

Table input ORDERS Calculator ~ Delivery Sortrows Select values

Ordina ed pggiunge

S

A3
«e Bl

Write to log Replace in string

Nome del passo [RETIlT

Livello dilog | Log di base -]

Adding and removing a costant Sump mstsione

Campi
. Campo
1 delivery
2 ORDERNUMBER
- 3 REQUIREDDATE
4 SHIPPEDDATE
5 MyCustomer
6 CUSTOMERNUMBER
7 CUSTOMERNAME
8 CONTACTLASTNAME
9 CONTACTFIRSTNAME
10 PHONE
1 ADDRESSLINEL
12 ADDRESSLINE2
13 CITy
14 STATE
15 POSTALCODE
16 COUNTRY
17 SALESREPEMPLOYEENUMBER
18 CREDITLIMIT
19 testo
oK] [Preleva campi] [Annulla]
Table output My
I
-
Ordina edaggiunge
Table input CUSTOMERS _
X
= %
1.° C —
@—P—@—'— IE? ——— B ! Rimuovilcostante
Tableinput ORDERS Calculator ~ Delivery ~ Sortrows Select values Add consfSats

E—E.

Wirite to log Replace in string

Deleting a table

AL RSN Table output MyTable

Connessione | root@MYSQL_localhot

Schema di destinazione

Tabella di destinazione miaTabella

Dimensione del compfit 1

Tronca tabella [V]
Ignorare gli errori di inserime?

Specifica i campi database (V]

W&mpi databasa

A Basic Mondrian Cube
‘dfm - star schemqi
]

Priori
ority Status
Type

O\ dim_assignee dim_type

ISSUE assignee_id: BIGINT [PK] issue_type_id: BIGINT [PK]

Assi O/ Id \ORCS olution assignee: VARCHAR(255) issue_type: VARCHAR(255)
ssignee T “‘

——

fact_issue
id: INTEGER [PK]

dim_priority

—— . Missue_type_id: BIGINT [FK]
priority_id: BIGINT [PK]—+—%Sstatus_id: BIGINT [FK]

o resolution_id: BIGINT [FK] .
priority: VARCHAR(255) priority_id: BIGINT [FK] ;p_—f—dlm_sta.tu.s
assignee_id: BIGINT [FK] status_id: BIGINT [PK]
¥ status: VARCHAR(255)

dim_resolution
resolution_id: BIGINT [PK]

resolution: VARCHAR(255)

The relational db schema

(execute this scriﬁi in M‘SQL)
]

DROP DATABASE IF EXISTS sampleissue;
CREATE DATABASE sampleissue;
USE sampleissue;

-— type dimension
CREATE TABLE dim_type (
issue_type id BIGINT NOT NULL PRIMARY KEY,
issue type VARCHAR(ZS55)
) ;
CREATE UNIQUE INDEX idx _dim type pk ON dim type (issue_type id);
CREATE INDEX idx dim type lookup ON dim type (issue_type) ;

—— fact table

CREATE TABLE fact_ issue (
assignee_ id BIGINT,
issue_ type id BIGINT,
priority id BIGINT,
status_id BIGINT,
resolution id BIGINT,
id INT primary key
) ; . . . (this script is not complete)

Building a Star Schema Cube

For each dimension field it is necessary to store
all possible values in a dimension table also
generating an artificial key.

This key should be used to reference the
dimension values in the fact table.

We build the cube using the Kettle ETL tool.

The MySQL DBMS should be active and
accessible.

Kettle transformation

The transformation is going to make use of the,
Comblnatlon lookup/update” step from the “Data
Warehouse” section.

It does exactly what is required to fill the dimension tables
and create the artificial keys.

The step is configured with a table, the name of the
artificial key field, and the row stream fields that make up
the dimension.

When a row passes this step the fields are looked up in
the dimension table.

If a match is found, the corresponding key is added to the
row stream.

If there is no match, the step creates a matching entry in the
dimension table and puts the (newly generated)
corresponding key to the row stream.

The trasformation

So whenever a row passes a “Combination lookup/update”
step, it ensures that there is a row with the dimension fields in
the dimension table and puts the corresponding key to the row

stream.

Exactly what is required to build a star schema cube.

The following transformation recreates the cube using the

Excel sheet as input.
It uses dimension tables.

For each dimension table there is a corresponding dimension step

which is responsible for filling it.
At the end of the process the fact table is written.

B

Excel| Input

a

write facts

S SN—

S —

dim_type dim_assignee dim_priority dim_resolution

dim_status

Combination lookup /update step

The Combination lookup/update, looks in the
dimension table for a record that matches the key
fields you put in the upper grid in the settings
window.

If the combination exists, the step returns the
surrogate key of the found record.

If it doesn't exist, the step generates a new
surrogate key and inserts a row with the key fields
and the generated surrogate key.

In any case, the surrogate key is added to the
output stream.

Combination lookup /update step (2)

city_id | city_name | country_name | | recor d in Js database
7001 | Buenos Ares Argentinz
get reggions
R Fev fields
Ik_regions - record inserted

g idl clky | counkry I regicn | id_js | lastupdate |

7 ONA NjA A 7001 2009{09/25 00:00:00,000

Combination lcokyp/update regions

surrogate key Ik_regions - record updated

G id | ciy | courtry | region | id_i:_lMpdale
7 Buenos Airas frgentina MA 7000 2009{09)25 00:00:00.000
Update non-key values

Input Excel

Nome del passo Excel Input

File N Foglﬂ Contenutcﬂ Gestione degli errorij Campn Campi di output addizionaln

File o cartella g{Internal. Transformation.Filename.Directory}/bug_report.xls

Espressione regolare

Escludi espressione regolare

Selezienaifile: | 2 * | moscantella Wildcard (RegExp)
1

< L)

Accetta i file dai passi precedenti
Accetta nomi difile dal precedente

Passo da cui leggere i normi di file I

Campo nell'input da usare come |

oK || Anteprimarighe || Annulla

Combination Lookup updq’re

P oo e v Py
Nome del passo dim_type
Connessione | root@MYSQL_localhot % | [Modiﬁca...] | Nuovo...l
Schema di destinazione P @]
Tabella di destinazione dim_type @ [Sfoglia...]
Dimensione del commit 190 mensione della cache gggg
Campi chiave (per selezionare la riga nella tabella):
" Campo dimensione Campo nello stream
1 issue_type issue_type

Campo della chiave tecnica issue_type_id
Creazione della chiave tecnica

@ Usa il massimo della tabella + 1

Usa sequenza

() Utilizza campo di auto incremento

Rimuovere i campi di lookup?
Utilizzare hashcode?

Campo hashcode nella tabella

Data dell'ultimo campo update

OK || Annulla || Prelevacampi || sqL

Nome del passe dim_assignee

Connessione | root@MYSQL_localhot

Modifica...

Nuovo... |

Schema di destinazione

® o)

Tabella di destinazione dim_assignee

Dimensione del commit 100

Campi chiave (per selezionare la riga nella tabella):

@ [stogia...|

Dimensione della cache gggg

~
Campo dimensione Campo nello stream

assignee assignee

Campo della chiave tecnica assignee_id
Creazione della chiave tecnica

@ Usa il massimo della tabella + 1
Usa sequenza
() Utilizza campo di auto incremento
Rimuovere i campi di lookup?
Utilizzare hashcode?

Campo hashcode nella tabella

Data dell'ultimo campo update

OK l [Annulla l [Preleva campi l [

SQL

Nome del passo dim_priority

Connessione [root@MYSQL_localhot

Modifica...

Nuovo... l

Schema di destinazione |

® o

Tabella di destinazione dim_priority

Dimensione del commit 100

Campi chiave (per selezionare la riga nella tabella):

@ [Stogia..

Dimensione della cache gggg

~
Campo dimensione Campo nello stream

priority priority

Campo della chiave tecnica priority_id
Creazione della chiave tecnica

@ Usa il massimo della tabella + 1
Usa sequenza
() Utilizza campo di auto incremento

Rimuovere i campi di lookup?
Utilizzare hashcode?

Campo hashcode nella tabella

Data dell'ultimo campo update

OK l [Annulla l [Preleva campi l [

SQL

Nome del passe dim_resolution

Connessione | root@MYSQL_localhot

Nuovo... |

Schema di destinazione

® fowi)

Tabella di destinazione dim_resolution

Dimensione del commit 1gg

Campi chiave (per selezionare la riga nella tabella):

@ [Stogia...|

Dimensione della cache gggg

S
4 Campo dimensione Campo nello stream

resolution resolution

Campo della chiave tecnica resolution_id

Creazione della chiave tecnica

@ Usa il massimo della tabella + 1

Usa sequenza

() Utilizza campo di auto incremento

Rimuovere i campi di lookup?
Utilizzare hashcode?

Campo hashcode nella tabella

Data dell'ultimo campo update

OK] [Annulla] [Preleva campi] [SQL

Nome del passe dim_status

Connessione | root@MYSQL_localhot

Nuovo... |

Schema di destinazione |

® [

Tabella di destinazione dim_status

Dimensione del commit 1gg

Campi chiave (per selezionare la riga nella tabella):

@ [Stogia...|

Dimensione della cache gggg

S
4 Campo dimensione Campo nello stream

status status

Campo della chiave tecnica status_id

Creazione della chiave tecnica

@ Usa il massimo della tabella + 1

Usa sequenza

() Utilizza campo di auto incremento

Rimuovere i campi di lookup?
Utilizzare hashcode?

Campo hashcode nella tabella

Data dell'ultimo campo update

[OK] [Annulla] [Preleva campi] [SQL

Add sequence

Nome del passo Add id

Nome del valore g

Utilizzare un database per generare la sequenza
Utilizzare DB per ottenere la sequenza?

Connessione | root@MYSQL_localhot ‘ gL | I g ’

MNome dello schema ’

MNome sequenza [SEQ_]‘

Utilizzare un contatore di trasformazione per generare la sequenza

Usare contatore per calcolare la sequenza? (V]

Nome contatore (opzionale)

Inizia dal valore 1

Incrementato di 1

Valore massimo 999999999

OK

Output table

Nome del passo rite facts

Connessione | root@MYSQL_localhot ~ | [Medifica...| [Nuove...|

Schema di destinazione]0 [ﬂ]

Tabella di destinazione fact jssue @ [ﬂ]

Dimensione del commit 1000 ¢
Tronca tabella [V]

Ignorare gli errori di inserimento [
Specifica i campi database (V]

Opzioni principali | Campi

Campi da inserire:

° Campo tabella Campo stream | Preleva campi l
1 assignee_id assignee_id @
2 issue_type_id issue_type_id
g} priority_id priority_id
4 status_id status_id
5 resolution_id resolution_id
6

id id

The Schema File

-
o After storing the cube in a DB, Mondrian must be

informed about the table structure.

71 The schema file now references a table for each
dimension and specifies the key fields for both sides
of each relation.

<?xml version="1.0"2>
<Schema name=' IssueSchema">
<Cube name="Issue">
<Table name="fact_issue"/>
<Dimension name="Type" Fcﬂeigﬂﬁey="issue_type_id">

<Hierarchy has MLL- true” allMemberName="All Types" primaryKey="issue
<Table name="dim type />
<Level name="Type" column="issue_type" uniqueMembers="true"/>
</Hierarchy>
</Dimension>
<Dimension 1ar~—'A551gnee Fc“eig\fwc 3551gnee id">
<Hierarchy hasAll="true" allMemberName="All Assignees" primaryKey="a
<Table name="dim a551gnee />
<Level name="Assignee" column="assignee" uniqueMembers="true"/>
</Hierarchy>
</Dimension>
<Dimension ﬂare="Priority" fcﬂeigﬂiey=“priority_id">
<Hierarchy 1as H-;- true” allMemberName="All Priorities” primaryKey="
<Table name="dim pPlOPlty />
<Level name="Priority" column="priority" uniqueMembers="true"/>
</Hierarchy>
</Dimension>

. (this script is not complete)

Issue Tracker View
Chart

Using JPivot
N

All Priorities.
Filter: Status=[Status].[All Status].[Open], Type=[Type].[All Types].[Bug]
@ Abby Cadabby. @ Bert. © Big Bird. Cookie Monster. @ Count von Count.
Elmo. = Ernie. ® Grover. ® Oscar. ® Rosita. @ Telly Monster. © Triage. ® Zoe.
Dimensions ® = Priority
Assignee Assignee [+] All Priorities
All Assignees | Abby Cadabby 2
Bert 9
Big Bird 1
Cookie Monster 2
Count von Count 20
Elmo 4
Emie 4
Grover 3
Oscar 11
Rosita 8
Telly Monster 3
Triage 2
Zoe 7

Filter: Status=[Status].[All Status].[Open], Type=[Type].[All Types].[Bug]

Installation Tools

You can download the tools from

Pentaho Bl Platform and Server
Stable build of Pentaho Bl Server 3.7.0 or higher

Schema Workbench

Stable build of Schema Workbench 3.2.1 or
higher

http://community.pentaho.com/

Pentaho Bl Platform and Server

biserver-ce

This is the actual Pentaho Bl Server (Community
Edition).

Set the variable JAVA_HOME to the JDK
distribution (not to JRE).

Start this server before the other tools.
The server URL is:

http://localhost:8080/pentaho

Pentaho Bl Platform and Server

administration-console (PAC)

This is an administrative service to manage and
configure the actual Pentaho Bl Server.

Pentaho Administration Console (PAC) URL.:

Login: admin, Password: password

Configure an user and a connection to the MySQL
DBMS.

The configured user and connection allows the access
to the Mondrian server.

http://localhost:8099/

Database connection

) entahow

open sounce business mtelligence™

Database Connections

SampleData

@@ @

General Advanced
Name:

sampleissue

Driver Class:

(org.gjt.mm.mysal.Driver

User Name:

b2

Password:

URL:

ljdbc:mysql:/ /localhost:3306/sampleissue

| Test | Upaate |

Users and roles (access to the server)

Assigned Roles [%
Admin
Authenticated

Pentaho Schema Workbench

Pentaho Schema Workbench is distributed as .zip
and .tar.gz archives.

After downloading, you need to unpack the file.
This yields a single directory called
schema-workbench containing all the software.

You need to place any JDBC Driver .jar files that
you may need to connect to the data warehouse
in the drivers directory:

Add the MySQL connector .jar file.

Database connection
(The MySQL DBMS must be active and accessible)

Advanced
Options
Pooling
Clustering

Connection Name:

|sampleissue

Connection Type:

[mysaL

Neoview

Netezza

Oracle

Oracle RDB

Palo MOLAP Server
PostgreSQL
Remedy Action Request System
SAP ERP System
SQLite

Sybase

SybaselQ

Teradata

UniVerse database

Vertica
dRaca lll N ar &

Access:

Native (JDBC)
ODBC
JNDI

Settings

Host Name:

llocalhost

Database Name:

|sampleissue

Port Number:

3306

User Name:

|root

Password:

Use Result Streaming ...

JDBC Explorer

File Edit View Options Windows Help

SIS

. JDBC Explorer - MySQL jdbmysd:lllocalnost:?p:soslsamplelssue
[| All Schemas
¢ [Default Schema
¢ [dim_assignee
[} assignee - VARCHAR(255)
D assignee_id - BIGINT
o= [dim_priority
o= (3 dim_resolution
o= [dim_status
o=] dim_type
? [j fact_issue
[} assignee_id - BIGINT
[id- INTEGER(10)
[issue_type_id - BIGINT
[y priority_id - BIGINT
[resolution_id - BIGINT
[status_id - BIGINT

Using the Schema Editor

Schemas are created and edited using the
schema editor.

File > New - Schema to open the schema
editor.

The schema editor has a tree view on the left
side, showing the contents of the schema.
Initially, this will be almost empty, save for the

Schema node, which is the root of the entire
schema.

On the right side, the schema editor has a
workspace where you can edit elements in the
schema.

The XML document

File Edit View Options

&L"ﬁ @ | |8

Schema - Issue Schema (Issue Schema.xml)

Q| A | Fe | Am| v | uor| em | &

xSchema| | Schema
o @ xlssue §§ <Schema name="IssueSchema"= =
| <Cube name="Issue” cache="true" enabled="true"=
<Table name="fact_issue™=
=/Table=
<Dimension foreignKey="issue_type_id" highCardinality="false” name="Type™=
=<Hierarchy hasAll="true” allMemberName="All Types” primaryKey="issue_type_id™=
<Table name="dim_type"=
=/Table=
<Level name="Type" column="issue_type" type="String” uniqueMembers="true” levelType="Regular” hideMemberlf="Never=
=/Level=
=/Hierarchy=
</Dimension=
<Dimension foreignKey="assignee_id" highCardinality="false” name="Assignee"™=
=<Hierarchy hasAll="true" allMemberName="All Assignees” primaryKey="assignee_id™=
<Table name="dim_assignee™
=/Table=
<Level name="Assignee” column="assignee” type="String" uniqueMembers="true" levelType="Reqular” hideMemberlf="Never =
=/Level=
=/Hierarchy=
</Dimension=
<Dimension foreignKey="priority_id" highCardinality="false™ name="Priority™=

L¢]

Basic Schema Editing Tasks

The tasks can be summarized as follows:
Creating a schema
Creating cubes
Choosing a fact table
Adding measures
Creating (shared) dimensions

Editing the default hierarchy and choosing a
dimension table

Defining hierarchy levels
Optionally, adding more dimensions
Associating dimensions with cubes

Creating a schema

Schema.-.World.Class Movies S ehemMalXIMDE 50 i o o’
9 F “:” ":n (2
L N§*_ UQ*_ Ch_ﬂ'_ G AL
i~ Schema v
: Attribute Value
‘jname World Class Movies
‘ImeasuresCaption
:|defaultRole

o In the Options menu: please, uncheck the
“Require schema” option to avoid syntactical

errors.

Creating a Cube

% 54] o] (@] 4]

i a Cube

2 Attribute
wem_orders 8 s WCIm.araers
“|caption World Class Movies Sales
‘lcache

enabled

Fact table Tahle does not exist in database .

E] Database - wocm_dwh (MySQL)

o name - Specifies the name that will be used in MDX queries to refer
to this cube. This name must be unique within the schema.

o caption - Specifies a display name, which will be used by the user
interface to present this cube to the end user.

cache - Controls whether data from the fact table should be cached.
enabled - Controls whether Mondrian should load or ignore the cube.

Errors

A little red X icon can appear to the left of the
schema and cube icons.
The red X icon indicates that there is some error or

misconfiguration at or somewhere beneath that
particular node.

Choosing a Fact Table

_
o The cube node is initially collapsed, and if you expand it, you

will notice it contains a table node.

o This table node represents the fact table upon which the cube
Is built. In this case, your cube should be based on the

fact_orders table,
which is why you set the table name using the drop-down list box.

E Schema - World Class Movies (Schemal.xmb*

| Q| A A |sn | g |vop| oM | | i CAPSARSEE AR) @ | |
A Schema i Tahle for 'wcm_sales’ Cube v
: Attribute Value
? @Wcm_sahas =g
fact_orders ‘name fact_orders v
falias dim_promotion
: dim_time
dim_warehouse
dim_website
fact_customer
fact_inventory
fact_orders _
fact_purchases

EI Database - wocm_dwh (MySQL)

Choosing a Fact Table (2)

schema -The identifier of the database schema
that contains the fact table.

When not explicitly specified, the default schema of
the database connection is used.

name - The name of the fact table.

When connected to a database, the property editor
provides a drop-down list box.

alias - This is the table alias that will be used for
this table when generating SQL statements.

It may be useful to specify this in case you want to
debug the SQL statements generated by Mondrian.

Adding Measures

o To add measures, first select the cube (or its fact

table) in the tree view.

o Then, click the Add Measure button on the toolbar.

The order in which you specify the measures is
significant: implicitly, the first measure in the cube is
considered the default measure.

[Schema - Wonld Class Movies Schemalxm® 0
'} : F Qeallidies i [m ¥
@ﬁ?’ﬁ@“i”‘#% v L @}++2+% EI[%
f: Schema & [.;dd Measure| Measure for "'wcm_orders’ Cube |' I
: Attribute Value
\ @ WEMQrHers “Iname Revenue
fact_orders “|aggregator sum
1 “jcolumn revenue
% Local Order Date “fformatString Currency
Msible
' : “datatype
uantit :
R " “fformatter
Rental Duration “|caption
El Database - wocm_dwh (MySQL)

Adding Measures (2)

name - The identifier that will be used to refer to this
measure in MDX queries. This must be unique within
the cube.

aggregator - The name of the function that is used to
aggregate the measure. The attribute grid offers a
drop-down list box from where you can pick one of
sum, count, min, max, avg, and distinct-count.

column - The name of a column from the cube’ s fact
table. When connected to the database, the attribute

editor offers a drop-down list box from which you can

pick the column.

formatString - Here you can specify a string pattern
that specifies how the measure value will be
formatted for display.

Adding Measures (3)

visible - A flag that specifies whether the

measure Is displayed to the end user in the user
interface.

datatype - Here you can use a drop-down list box
to choose String, Numeric, Integer, Boolean,
Date, Time, or Timestamp.

When returning data, the specified data type will be
used to return data in the MDX result.

formatter - You can use this attribute to specify a
custom cell formatter.

caption - Specifies the display name that is used
to present this measure in the user interface.

Adding Dimensions

]
o The Mondrian schemas can contain dimensions in

two places:

Inside the cube that ‘“owns’” the dimension

= These dimensions are called private dimensions because
they are known only to the cube that contains it and cannot
be used outside the enclosing cube.

Inside the schema itself

m These are shared dimensions and can be associated with
multiple cubes, and/or multiple times with the same cube.

B Schema - World Class Movies (Schemal.xml™ i

@ %J okt | 5| NS | UoF | om | | g QA2
xSchemahsi];‘ Shared Dimension "
- ’ . .

Add Dimension : Attribute Value

o @ wCm_orders

“lname Date

o .}k xDate [foreignKey - |
sftype TirmeDimension
:jusagePrefix

“Jcaption

Hierarchy New Hierarchy O is invalid

Database - wocm_dwh (MySQD

Adding Dimensions (2)

name -
For private dimensions, the name refers to this dimension in MDX
queries.

The name must be unique among all other dimensions used by the
cube.

For shared dimensions, the name refers to the dimension when
you are associating it with a cube.
The name must be unique within the schema.

foreignKey - If this is a private dimension, this is the name of a
column from the cube’ s fact table that refers to the dimension
table that corresponds to this dimension.

type - If your dimension is time or date related, you should use
TimeDimension. This allows you to use the standard MDX
time and date functions. Otherwise, use StandardDimension.

caption - This is a display name used to present this
dimension to the end user via the user interface.

Adding and Editing Hierarchies and Choosing Dimension
Tables

When you create a dimension, a new hierarchy is
also created.

You can see it when you expand the dimension node.
In addition, a table node must be created beneath the
hierarchy node.

Before you edit the hierarchy node, it is best to
configure the underlying table node.

The table node represents the dimension table that will
deliver the values for the levels of the hierarchy.

The procedure to configure the table is exactly the
same as the procedure for choosing a fact table for a
cube, which was described earlier in this section.

Adding and Editing Hierarchies and Choosing Dimension
Tables (2)

‘ Schema - World Class Movies Schemal.xmbD*
EZ

|| @) A | A |5n) ve|ver| en | & | fig LIS 2] &

=) xSchema - Hierarchy for 'Date’ Dimension v I

: Attribute Value
o- @ W _orders name Manths
9 A xDate “IhasAll
¢ B xHierarchy allMemberiame

slallMemberCaption
dim_date_en_us | fallLevelName
“|defaultMember
“ImemberReaderClass
“lprimandeyTable
“primandley date_key
“|caption

Hierarchy Months must have levels

| IZI Database - wcm_dwh (MySQD

o name - The name used in MDX queries to refer to the
hierarchy.

It must be unique within the dimension.

o caption - The name that is used to present this
hierarchy to the end user in the user interface.

Adding and Editing Hierarchies and Choosing Dimension
Tables (3)

hasAll - A flag that indicates whether the hierarchy should
have an all level with an all member.
Es: a single member in the top of the hierarchy that

represents all other members. Usually you should leave this
on.

allMemberName - If hasAll is enabled, this specifies the
MDX identifier that is to be used for the all member.

allMemberCaption - If hasAll is enabled, you can use this
to specify the name that will be used to present the all
member to the end user in the user interface.

allLevelName - The name used to refer to the all level in
MDX queries.

defaultMember - The name of the default member. If this
IS not specified, then the all member will be used as
default member if the hierarchy has an All member.

Adding and Editing Hierarchies and Choosing Dimension
Tables (4)

primaryKey - Typically, you should use this to
specify the name of the primary key column of
this hierarchy’ s dimension table.
To be exact: this is the column name of the
dimension table that is referenced by the rows in

the fact table. This should be a column in this
hierarchy’s dimension table.

Adding Hierarchy Levels

S =
- Now that you created the hierarchies, you must
define their levels.

Schema - World Class Movies Schemal.xmb* i
QA A& mn] o i) o] @A) &% B 6 @)
Schema i~ %ﬂ wa Level for "Weeks' Hierarchy v I
| i L—-——-——""' Ao .'——‘
o~ @ wem_orders ; Attribute Value
sname Day
? A Date ‘ftable
: “|column day_in_week
7 A Hierarchy “InameColumn
|- §45% Year “lparentColumn
“InullParentyalue
- feen Quarter |ordinalCalumn
#8434 Month fvme
“|unigueMembers O
Day “levelType TimeDays
- dim_date_en_us | hldeMe:beEIf
“|lapproxRowCount
? x'i‘h Hierarchy gg caption
| 5k8 Yaar “|captionColumn dav abbreviation [+
________ ‘[farmatter
2an Week %
! dim_date_en_us
[] patabase - wem_dawh ayson

Adding Hierarchy Levels (2)

name - The name that is used to refer to this level in MDX queries.

table - The name of the table that contains the columns where the
dimension data is stored for this level.

When not specified, the hierarchy’s dimension table will be used. This is
the normal situation for star schemas like the one used in this example.

You need to specify a particular table only when dealing with snowflake
schemas.

column - The column that represents the member identifier for this
level. This must correspond to this level’ s table (see the table
attribute).

nameColumn - The name of the column that contains the name of
this level.

When not specified, the value of the name property is used. Typically you
should leave this blank.

captionColumn - You can specify which column of the level’ s
dimension table should be used to present the members to the end
user.

When not specified, the member identifier will be used.

Adding Hierarchy Levels (3)

ordinalColumn - This attribute can be used to specify which column
defines how the member values should be sorted by default.

type - The data type of the member values. This is used to control if
and how values must be quoted when generating SQL from MDX
queries.

uniqueMembers - A flag indicating whether all the members at this
level have unique values.

This is always true for the first level (not counting the all level) of any
hierarchy.

levelType - If you leave this blank, it will be assumed this is a regular
level, which is the correct value for most dimensions.

Dimensions that were configured to be of the type TimeDimension must
specify one of the predefined types for TimeDimension levels: TimeYears,
TimeQuarters, TimeMonths, TimeWeeks, and TimeDays.

For TimeDimensions, specifying the levelType is a prerequisite for correct
usage of the Mondrian date/time functions such as YTD.

hideMemberlf - This determines in which cases a member should be
hidden. Typically, you can leave this blank, which is equivalent to
setting the value to Never. In this case, the member is always shown.

Example

The levels of the Months hierarchy

NAME LEVELTYPE COLUMN CAPTIONCOLUMN UNIQUEMEMBERS

Year TimeYears year4 enabled

Quarter TimeQuarters quarter quarter disabled
_number _name

Month TimeMonths month Month disabled
_number _abbreviation

Day TimeDays day_in disabled
_month

The levels of the Weeks hierarchy

NAME LEVELTYPE COLUMN CAPTIONCOLUMN UNIQUEMEMBERS
Year TimeYears year4 enabled
Week TimeWeeks week_in_year disabled

Day TimeDays day_in_week day_abbreviation disabled

Associating Cubes with Shared Dimensions

o In Mondrian schemas, the association between a
cube and a shared dimension is called a dimension

usage.

o To add a dimension usage, either select the cube and
right-click the cube and choose the Add Dimension

Usage option from the context menu.

i X

g dn) gl i) o) (@ A[S| |24 D)@ 7
J

o' k\
B) i , &1 P Dimension Usage for 'wcm_orders' Cube
SChema LAqH Dimension Usage] | ATGIbULE - Value

r :
? @ wem_orders “Iname Local Order Date

fact_orders foreignkey local_order_date_key
slsource Date

v

ssks ILocal Order Date =
Revenue |usagePrefix

Quantity caption

& Rental Duration

o _,5_ Date

D Database - wocm_dwh (MySQL)

Publishing the Cube

You can publish the cube to the Pentaho Bl Server.

To invoke the publish dialog, choose File = Publish
from the main menu, and the dialog pops up.

For the URL, specify the web address of the Pentaho
Bl Server to which you want to publish the schema.

You must use the publisher password that you specified
in the server’'s publisher _config.xml file.

For the username and password, specify the
credentials of the user created or modified with the
administration-console tool.

If the connection succeeds, a dialog appears that
allows you to browse the server’ s solution repository.

Choose the appropriate path (or create a new folder).

Publishing the Cube

File Edit View Options Windows Help

5 -[al@@] [&]

v Issue | 800 _Repository Login - o
Table: fact_issue abled="true">
v A Type ~Server
> 4@ default URL: L .
.) rue" foreignKey="i:
v A;;srgnee http://localhost:8080/pentaho/
" ' dfefauh Publish Password: piame="All Type
v A Priority
> A default ok
v A Status issue e" e='
> G default ~Pentaho Credentials IType—ggegHai)r";l
v A Resolution User:
v &5 default [.
. admin
aaan Resolution
Table: dim_resolutio Password: . . "
Issue Count ’.““ rue" foreignKey="a
rName="All Assi
EJ Remember these Settings
[OK] | Cancel] . .
n="assignee" type

EI Database - sampleissue (MySQL)

Publish the schema

use the database connection

Schema Workbench

File Edit View (\nfinn: Windaue Haln -
i i O 8 T .11 N7 . VGO ——_—
H G~ s (i

Schema Name:

MW — IssueSchema S
Schema File: WP
ICIPAES | |
IssueSchema.xml
=] Location: |
v Issue ’/ = B 6
Table: fa — led="true">
v A Type Name Type Date Modified
ﬁ,?:p 2 admin File Folder 06/08/2013 11:44 PM
> i default] |25 b developers File Folder 06/08/2013 11:44 PM e" foreignKey="i:
v }\, Assignee [plugin-samples File Folder 06/08/2013 11:44 PM
> A0 defaul Ml sampleissueFolder File Folder 01/01/1970 01:00 AM rName="All Type
- A Priority [steel-wheels File Folder 06/08/2013 11:44 PM
> A defau
v A status ssue_type” type="
> A defaul ype-=“ReguIar" h
v A Resolutiol
v x'i'?v._defau
7277 Re N == == e
- PubkthSettings —
T3 ’ ~ e" foreignKey="a
Issue AU Pentaho or JNDI Data Source: \ gnkey=
(| ‘ sampleissue b rName="All Assii
\
\ @ Register XMLA Data Source Vs
> 4 . . "
~ - _ n="assignee" type
L QR | Publish | | Cancel |

EI Database - sam

Example: MDX Query Syntax™

SELECT <member collection> ON COLUMNS,
<member collection> ON ROWS

FROM <cubename>

WHERE <conditions>

SELECT { [Measures].[Store Sales]} ON COLUMNS,
{ [Date].[2002], [Date].[2003] } ON ROWS

FROM Sales

WHERE ([Store].[USA].[CA])

Visualizing Mondrian Cubes with JPivot

The user console ()
of the Pentaho Bl Server offers the possibility to
create an analysis view, which is essentially a
JPivot cross table on top of a Mondrian cube,
wrapped in a Pentaho process action.

To create a new analysis view, click the analysis
view icon on the toolbar or on the initial
workspace page.

http://localhost:8080/pentaho

Creating an analysis view

Schema

World Class Movies ;i

Cube

| wem_orders a

The default pivot table

The OLAP navigator

Open OLAP Navigator
o T T S
= Columns @

BY AY DVD
BY A Customer

Slicing with the OLAP Navigator

[= columns

|| B Y ¥ Customer

| H Y A Measures

B Rows
| Date

7 Filter

IIDVD

\eK

DVD @

< all DVDs
@ 4 action/adventure

T e e
1 ' < | iy
|+ oty

1 . - |8 ! 5
- — ¢

| !

AS N C‘_'.LJA.)- L

| Measures Measures

ly us 061, 82
2008 ®43,368.96 ®435,630.52

H77, 052. 13

D¥D @ SF action/Comedy
C 4 AII DVDs = .
[
C & War
T 4 Western
— Cusb:imer' Gl’oup OK Cance'

Slicet: [Genre=A ction/A dventure]

Chart

Unit Sales in 1997

90.000
80.000
70.000
60.000
50.000
40.000
30.000
20.000
10.000

Drink. Food.

Non-Consumable.

Chart Properties (%)
Chart Type | Vertical Bar |

Enable Drill Through | M

Chart Title |Revenue over Time per Customet

Chart Title Font [SansSerit x| |Bold x|[18 =]
Horizontal axis label |Time

Wertical axis label [Revenue |

Aixes Label Font [SansSert x| |Plain =] [16 =]

Axes Tick Label font |[SansSerit x| |Plain =] [12 =] [30° =]
Show Legend v m

Legend Font [SansSerit x| |Plain =|[12 =]

Show Slicer v | Bottomn ¥ | I Lett x|

Slicer Font [SansSerit x| |Plain x][12 =]

Chart Height [300 Chart Width [1000

Background (R, G, B)[[255 [255 |55

